GRE考试中也包含着数学部分的考试,那么数学部分的考试范围是什么呢?这部分的考试难不难呢?还不了解的考生一起在本文中学习了解一下吧。
1、高中知识
各种三角诱导公式,和,差,倍,半公式与和差化积,积化和差公式,平面解析几何。
2、数学分析
极限,连续的概念,单变量微积分(求导法则,积分法则,微商),多边量微积分及其应用,曲线及曲面积分,场论初步。
参考书:张筑生先生的3册《数学分析新讲》,Walter Rudin的Principles of Mathematical Analysis
3、微分方程
基本概念,各种方程的基本解法。
参考书:Wolfgang Walter, Ordinary Differential Equations
说明:以Cracking the GRE Math Test中的相关章节为主,一般不难。
4、线性代数
普通代数,艾森斯坦因法则,行列式,向量空间,多变量方程组解法,特征多项式及特征向量,线形变换及正交变换,度量空间。
参考书:镇系之宝,张贤科老师的《高等代数学》,Seymour Lipschutz的Theory and Problems of Linear Algebra
说明:Cracking the GRE Math Test这本书里面的东西也差不多够了,不过鉴于sub越来越难,大家还是回去翻翻张老师的书吧。
5、初等数论
欧几里得算法,同余式的相关公式,欧拉-费马定理。
参考书:冯老师的《整数与多项式》
说明:以Cracking the GRE Math Test相关章节为主。
6、抽象代数
群论及环域的基本概念及运算法则。
参考书:冯老师的《近世代数引论》
说明:抽象代数的内容最近几年越来越多,今年考试中考到了极大理想。
7、离散数学
命题逻辑,图论初步(基本概念,表示法,邻接and关联距阵,基本运算定理如V+F-E=2),集合论(注意了解一下偏序的概念)。
参考书:J. A. Bondy and U.S.R. Murty,Graph theory with applications
说明:逻辑的题目比较简单,也就是命题逻辑的基本运算,最多再加上真值表,随便找一本离散数学的书看看基本概念就行了。集合论的题目也比较简单。不过由于系里面没有开图论的课,所以大家还是好好看书,Bondy这本书看看第一章就行了。
8、数值分析
高斯迭代法,插值法等基本运算法则。
参考书:李老师等的《数值计算原理》
9、实变函数
可数性概念,可测,可积的概念,度量空间,内积等概念。
说明:以Cracking the GRE Math Test相关章节为主。
10、拓扑学
邻域系,可数性公理,紧集的概念,基本拓扑性质。
参考书:J. R. Munkres, Topology
说明:重点,近几年的分量越来越大。以Cracking the GRE Math Test相关章节为主,不过据说考过foundamental group,大家还是好好看看书。
11、复变函数
基本概念,解析性(共厄调和的概念),柯西积分定理,Taylor&Laurent展式(重点),保角变换(非重点),留数定理(重点)
参考书:方企勤先生的《复变函数教程》,Lars V. Ahlfors的Complex Analysis
说明:学过复变就行了,一定要记住基本公式。
12、概率论与统计
古典概型,单变量概率分布模型,二项式分布的正态近似
参考书:李贤平的《概率论基础》
说明:以Cracking the GRE Math Test中相关章节为主,一般来说很简单。
以上就是关于GRE数学考试的考试范围,大家还不了解的可以来多多参考一下哦!最后,小编预祝各位考生早日考试成功!